Explaining the errors away: Young children forgive understandable semantic mistakes

Robyn L. Kondrad*, Vikram K. Jaswal

University of Virginia, United States

ARTICLE INFO

Keywords:
Errors
Trust
Testimony
Credibility
False belief

ABSTRACT

Errors differ in degree of seriousness. We asked whether preschoolers would use the magnitude of an informant’s errors to decide if that informant would be a good source of information later. Four- and 5-year-olds observed two informants incorrectly label familiar objects, but one informant’s errors were closer to the correct answer than the other’s (e.g., one referred to a comb as a brush and the other referred to the same comb as a thunderstorm). When informants had an unambiguous view of the objects, children could identify which informant was closer to being correct, but they did not favor novel labels the “closer” informant later provided. When the informants had an ambiguous view of the objects (e.g., only the handle of the comb was visible), children preferred the novel labels provided later by the “closer” informant. Preschoolers are willing to overlook semantic errors that are close to being correct, but only when there is an understandable reason for the speaker’s errors.

© 2012 Elsevier Inc. All rights reserved.

People usually do their best to tell children (and each other) the truth, or at least what they believe to be true. But for a variety of reasons, including error, ignorance, and deception, people sometimes say things that are incorrect. Recent research has shown that preschoolers are more likely to trust an informant who has been correct in the past over one who has been incorrect (Birch, Vauthier, & Bloom, 2008; Fitneva & Dunfield, 2010; Jaswal, McKercher, & VanderBorght, 2008; Jaswal & Neely, 2006; Koenig, Clement, & Harris, 2004; Koenig & Harris, 2005; Scofield & Behrend, 2008). In the typical paradigm, children hear two informants label several familiar objects. One informant correctly labels each (e.g., calls a ball a “ball”), and the other incorrectly labels each (e.g., calls the ball a “telephone”).

* Corresponding author at: Department of Psychology, 102 Gilmer Hall, PO Box 400400, Charlottesville, VA 22904, United States. Tel.: +1 434 806 2454; fax: +1 434 982 4766.
E-mail address: rkondrad@virginia.edu (R.L. Kondrad).

0885-2014/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.cogdev.2011.11.001
Children as young as 3 prefer new information from the speaker who has been consistently right to information from the one who has been consistently wrong. Given two speakers who both have made mistakes in the past, 4-year-olds favor new information from the one who has made relatively fewer errors (Pasquini, Corriveau, Koenig, & Harris, 2007).

Yet not all errors are equivalent – referring to a comb as a brush, for example, is closer to being correct than referring to it as a thunderstorm. In the present study, we asked whether the magnitude of past errors would influence the likelihood that preschoolers would trust information an informant provided later and whether this varied as a function of how reasonable those errors were given the context.

In the only study to date investigating children’s sensitivity to the magnitude of a speaker’s errors, Einav and Robinson (2010) found that not until early elementary school did children prefer novel labels from a speaker who had previously been closer to being correct to labels from one who had been further away. For example, 6–7-year-olds were more likely to endorse novel labels from someone who had earlier called a butterfly a bee than someone who called it a car, but 4–5-year-olds were about equally likely to endorse novel labels from either informant.

Einav and Robinson (2010) hypothesized that younger children would be more successful in a domain in which magnitude is more easily quantifiable. In their second study, 4–5-year-olds observed two informants incorrectly report the number of dots on a card, but one was incorrect by one number while the other was incorrect by several. When guessing the number of dots on cards they could not see themselves, children were more likely to rely on testimony from the informant who earlier had been closer to being correct. Einav and Robinson argued that younger children’s ability to evaluate credibility on the basis of magnitude information is “more evident when the error magnitude is a clearly quantifiable measure” (p. 227).

We suggest there may be at least one additional explanation why 4–5-year-olds in Einav and Robinson’s (2010) first study did not selectively trust the informant whose errors had been closer to being correct. They may have found it difficult to forgive either informant because there was no obvious reason either would have erred in labeling such simple, familiar objects (e.g., butterfly, horse, tiger, dog). The informants had unimpeded visual access to the objects, and they were native, adult speakers of the language. Thus, the relative size of the errors may have mattered less than the fact that errors were made at all. (This has not been an issue in previous studies on selective trust because on any given familiarization trial, one of two informants has always provided the correct familiar label, so the inaccurate speaker could simply be discounted.) If so, young children might selectively trust an informant who has made errors in the past given a plausible explanation for those mistakes (e.g., if the informant had only an ambiguous view of the objects she was asked to label).

Work by Nurmsso and Robinson (2009a) may clarify why offering an explanation for an informant’s errors could influence young children’s selective trust. In that study, 3–5-year-olds observed a single puppet claim that an object was green when in fact it was blue. In one condition, the puppet had seen the object and so should have been correct. In a second condition, the puppet had touched the object but had not seen it, so the error was reasonable. Later, children observed the puppet make a claim about the color of another object and had to decide whether to believe the puppet or guess for themselves. Children tended to rely on the puppet’s testimony if its earlier error had been reasonable given the context but to guess for themselves if not (see also Robinson & Nurmsso, 2009; but see Nurmsso & Robinson, 2009b).

Like Einav and Robinson (2010), we asked whether young children would prefer new information from an informant who had earlier made a series of mistakes close to being correct or information from one whose mistakes were further from the truth. Crucially, in one condition (Ambiguous View) we provided a context that could explain the “close” informant’s errors. In this condition, both informants had only a restricted, ambiguous view of the familiar objects. For example, in the case of a comb, only the handle was visible. The “close” informant claimed it was a brush, and the one further from the truth claimed it was a thunderstorm. Both are errors, but mistaking the handle of a comb for that of a brush seems reasonable given the context, compared to mistaking the handle of a comb for part of a thunderstorm. We chose to use the restricted-view paradigm because 4-year-olds can be trained to recognize that someone who has seen only part of an object may
not be able to identify that object (Taylor, 1988). Both informants subsequently offered conflicting novel labels for novel objects presented in full view, and children were asked which label was correct.

Children in a second condition (Unambiguous View) also observed two informants name familiar objects with restricted views. However, in this condition the view was sufficient to easily identify each object. For example, in an image of a comb, the teeth of the comb were visible and only the handle was obscured. Although the view was restricted, it was clearly a comb, so both informants’ errors were baffling – there was no obvious reason adults would misidentify such a familiar, everyday object. As in the ambiguous view condition, informants subsequently offered conflicting novel labels for novel objects presented in full view, and children were to decide which label was correct.

We expected children in the unambiguous view condition to treat the two informants as equally unreliable sources regarding the names of novel objects (as in Einav & Robinson, 2010), because both had made unexplainable errors when naming familiar ones. Of interest was whether children in the ambiguous view condition would prefer novel labels provided by the “close” informant because her mistakes when labeling familiar objects had been reasonable given the circumstances. We focused on 4–5-year-olds because Einav and Robinson found that children of this age failed to consider the magnitude of informants’ semantic errors when evaluating their credibility.

1. Method

1.1. Participants

Thirty-two 4-year-olds and 32 5-year-olds participated, with an equal number of boys and girls of each age. One additional 4-year-old and one additional 5-year-old in the ambiguous view condition were excluded because they failed the catch trials (described below). Children were primarily white, from middle-class backgrounds.

1.2. Materials

Four pairs of line drawings (a cat and dog, a bottle and jar, a tree and elephant, and a flagpole and basketball hoop) were used in a training phase to familiarize children with the restricted view procedure. Each was drawn on a 3 × 4 inch card (Fig. 1).

Additional materials included six photos of familiar objects (a comb, car, fork, trousers, cat, and banana), four photos of novel objects (a long handled, Y-shaped tool; a plumbing tool with a whisk-like structure at one end; an old-fashioned hand-drill with metal crank; and a hollow, square tool with a fat handle), and two headshots of adult women (one with black hair and the other with light brown hair). Photos could be covered with a piece of blue cardboard paper into which a window had been cut to provide the ambiguous or unambiguous view, depending on item and condition. Fig. 2 shows the stimuli used and which parts were visible through the window in each condition.

Each photo was printed in color. The objects were displayed on 4 × 6 inch cards and the headshots on 3 × 3 inch cards. Photos were obtained from a commercial photo-object software program (Hemera Technologies, Gatineau, Quebec, Canada).

1.3. Design

Sixteen children of each age were randomly assigned to either the ambiguous view or unambiguous view condition, balanced for gender. In the unambiguous view condition, the average age of 4-year-olds was 4–5 (range 4–0–4–10); the average age of 5-year-olds was 5–6 (range 5–1–5–11). In the ambiguous view condition, the average age of 4-year-olds was 4–6 (range 4–1–4–11); the average age of 5-year-olds was 5–5 (range 5–1–5–11). Children in both conditions participated in these phases in the following order: training trials, induction trials, test trials, catch trials, and an explicit judgment trial.
Fig. 1. Sample stimuli used in training phase. Each pair of line drawings shared one feature, which was the only part visible through the window (the tail in this case).

1.4. Procedure

Children were tested individually in the laboratory in a single 15-minute session. The restricted-view training phase was the same for both conditions and was modified from that used by Taylor (1988). The researcher sat across from the child at a small table and began by placing a pair of line drawings on the table and labeling each one (e.g., “This is a cat, and this is a dog”). She explained that she would hide one of the pictures behind a window so that only a little part of it was visible. It was impossible to identify which of the two objects it was from this view because both shared the visible part (e.g., a tail was visible, but both the cat and dog had exactly the same tail). She then asked, “Which picture do you think this is?” Without the child’s knowledge, the researcher hid both pictures behind the window, one stacked on top of the other, so she could later surreptitiously pull out the image the child had not guessed.

Next, to ensure the child recognized that the visible part of the drawing was part of the whole drawing just seen, the researcher pointed to it and asked, “Which part of the X do you think this is?” using the label the child had just provided. All children correctly identified the part on each trial. Finally, she said, “Let’s see what it is!” and pulled out the drawing the child had not guessed: “Look at that, it was the Y!” There were four training trials, each with a different pair of line drawings. By design, children in both the ambiguous view and the unambiguous view conditions guessed incorrectly on all four training trials, providing all children with experience of the difficulty in identifying a picture when only a small, ambiguous part is visible. This training experience was important because children younger than 6 do not readily understand the ambiguity that can arise from a restricted view of an object unless they have already tried and failed to identify ambiguous objects (Taylor, 1988).

The induction phase began with the researcher introducing pictures of two informants (Susie and Carol) and explaining that she had played the same restricted-view game from the training phase with them earlier. The researcher presented the restricted view of the first photo of a familiar object. In the unambiguous view condition, part of the object was covered, but it was identifiable (e.g., the handle of the comb was obscured but the teeth were visible, making it clear that it was a comb). In the ambiguous view condition, the object was obscured so that its identity was ambiguous (e.g., the
teeth of the comb were obscured but the handle was visible, making it impossible to see that it was not a brush). Fig. 2 shows the four familiar objects and which portions were visible in each condition.

Next, the researcher explained that one informant referred to the depicted object as an X and the other said it was a Y (e.g., “Look at this! She says it's called a brush, and she says it's called a thunderstorm.”). Children in both conditions were then asked if either label was correct. Immediately after the child responded, the researcher revealed the full object and labeled it correctly (“Let's see what it is! Look! It's a comb.”). Thus, regardless of children's initial beliefs about whose label (if either) was correct, they immediately learned that both informants had been wrong.

Note that during the induction trials, children in both conditions initially saw a restricted view of each familiar object – they did not see an unrestricted view of any object until after both speakers had labeled it. In the unambiguous view condition, of course, this did not matter because the identity of each object was obvious despite the restricted view. In the ambiguous view condition, however, children could not have known whether, for example, the comb was a brush because only the handle was visible. This ambiguity was important because children tend to interpret others' knowledge in light of their own (“the curse of knowledge”). Several studies have shown that when children are knowledgeable about something, their ability to reason about a less informed person's beliefs about that topic is compromised (Birch & Bloom, 2003, 2007; Camerer, Lowenstein, & Weber, 1989). It was therefore important that participants did not have more knowledge initially about the identity of the familiar objects than either informant.

The “close” informant referred to the comb, car, fork, and trousers as a brush, truck, spoon, and shorts, respectively, and the “far” informant referred to them as a thunderstorm, sneeze, dream, and cough. We
chose to have the “far” informant’s errors cross the ontological boundary between objects and events to provide a stringent test of our hypothesis. In Einav and Robinson’s (2010) Study 1, 4–5-year-olds did not discriminate between two erroneous informants whose errors varied in magnitude. However, the far errors in that study were situated in the domain of physical objects (e.g., a butterfly was referred to as a car). Our far errors crossed the ontological boundary between objects and events and were thus even more extreme. If children in the unambiguous view condition still failed to discriminate between the two informants (one of whom had made errors that were arguably absurd) on test trials, this would strongly suggest that children do not spontaneously use error magnitude when evaluating speaker credibility.

Objects were presented in the same order for all children. Whether Carol or Susie was the “close” informant was counter-balanced across children in each condition. Labels given by the “close” informant were provided first and fourth for half the children in each condition and second and third for the other half.

Four test trials followed and were identical in both conditions. After clearing the pictures of familiar objects from the table, the researcher explained that the child would see a picture of a new object and would hear what each informant called it. Children were told explicitly that this time, both informants could see the entire object in full view as they labeled it. On each test trial, the researcher placed a photo of one unfamiliar object between pictures of the two informants, and said, for example, “Look at this! She (pointing to Carol) says it’s called a tido, and she (pointing to Susie) says it’s called a gitch. Who is saying the right thing?”

Which informant used which novel label for a given object was counterbalanced across children. For half the participants in each condition, the label used by the “close” informant was provided first on the first and fourth test trials; for the other half it was provided first on the second and third test trials. Throughout, the researcher provided neutral feedback in a positive tone. This truth-value judgment procedure has been used successfully in previous research investigating selective trust (Jaswal et al., 2008).

Following the fourth test trial, we included two catch trials to ensure children had been paying attention to the labels attributed to each informant. Given the repetitive nature of the test trials (i.e., repeatedly hearing conflicting novel labels and having to choose between them), it is possible children would make selections without paying much attention by the end of the session. Catch trials were similar to the test trials, but the pictured object was familiar rather than novel – a cat on one trial and a banana on the other. On each catch trial, the researcher explained that the two informants referred to the object with conflicting familiar labels (e.g., the cat was referred to as a cat by one informant and a horse by the other) and asked the child to choose who was saying the right thing. A correct label was attributed to each informant on one of the trials, so children had to choose each informant once to pass the catch trials. One 4-year-old and one 5-year-old were excluded because they failed at least one of the catch trials.

Finally, in the explicit judgment trial, the researcher showed children the four photos of familiar objects used in the induction phase (comb, car, fork, trousers), reminded them of how each informant had referred to them earlier, and then asked which informant had been “almost right.”

Responses were coded twice – once by the experimenter during the session, and independently by a coder from videotape. Reliability was excellent, with the coders agreeing on 96% of the trials. The few discrepancies were resolved through discussion.

2. Results

Preliminary analyses showed no effects or interactions involving gender, so results are collapsed across these variables.

2.1. Induction trials

After they heard each informant label the restricted view of the familiar objects, children were asked if either label was correct. Children in the ambiguous view condition overwhelmingly indicated that the “close” speaker was correct. On average, they agreed with the familiar labels she provided on 3.44
(SD = .67) of the four trials, agreed with the “far” informant on just .44 (SD = .56) trials, spontaneously provided the correct label on .03 (SD = .18) trials, and made other responses on .09 (SD = .30) trials. It is interesting that children in this condition continued to agree with the “close” speaker on later induction trials, given that at the end of each earlier one, they learned that she had been incorrect. Note, however, that at the beginning of each induction trial, children in the ambiguous view condition could not easily identify the familiar object because the restricted view was insufficient; it would have been difficult for them to guess any more accurately than the “close” informant.

In contrast, children in the unambiguous view condition agreed with the “close” informant on just 1.24 (SD = .95) of four trials, significantly less often than those in the ambiguous view condition, t(62) = 10.66, p < .001. They never agreed with the “far” informant. Instead, children in unambiguous view condition spontaneously offered the correct label on 2.66 (SD = .94) of four trials on average and made other responses on the remaining .09 (SD = .3) trials. Children in the unambiguous view condition often attempted to explain why they would not agree with either informant (e.g., “I think both of them are wrong again!”; “I could tell that wasn’t a brush, because the hard thing would be more soft. And a thunderstorm, no way.”).

Regardless of which informant’s label they agreed with initially (if either), children in both conditions quickly learned that neither was correct when the experimenter revealed the full object and provided its correct label. Notably, after seeing the full view of the objects but before the experimenter had a chance to label them, most children in the ambiguous view condition (26 of 32) spontaneously commented on their true identity at least once (e.g., “That’s a car, not a truck!”; “Oh! It’s a comb! They were supposed to say comb.”). All children in the unambiguous view condition offered the correct label at least once, but of course children in this condition could easily identify the object from the beginning of each trial. Thus, children in both conditions entered the test trials understanding that both speakers had been wrong.

2.2. Explicit judgment question

Although the explicit judgment question came at the end of the session, we report these data first to provide a context in which to understand children’s selective trust in the test trials. Children had little difficulty identifying which of the two informants was closer to being correct about labels of familiar objects in the induction trials. In the ambiguous view condition, 14 of 16 (88%) 4-year-olds and 14 of 16 (88%) 5-year-olds responded correctly on the explicit judgment question. In the unambiguous view condition, 13 of 16 (81%) 4-year-olds and 13 of 16 (81%) 5-year-olds responded correctly.

2.3. Test trials

In the ambiguous view condition, 4–5-year-olds endorsed the novel labels from the “close” informant, on average, on 2.69 (SD = .70) and 2.81 (SD = .75) of four trials, respectively, significantly more often than expected by chance, ts > 3.94, ps < .001, ds > .98. In contrast, 4–5-year-olds in the unambiguous view condition selected the “close” informant, on average, on 2.06 (SD = .85) and 2.12 (SD = .72) out of four trials, at chance levels, ts < 1, ps > .50. Thus, children in the ambiguous view condition preferred labels from the informant who had been closer to correct about the names of familiar objects; those in the unambiguous view condition had no preference.

A 2 × 2 (age × condition) analysis of variance (ANOVA) of test trial data confirmed that children in the ambiguous view condition were more likely to endorse novel labels from the “close” informant than children in the unambiguous view condition, F(1,60) = 11.96, p = .001, η²p = .17. This result suggests that an error is less damaging to one’s credibility if there is an obvious reason for it than if not. The effect of age was not significant, nor was there an interaction, so we combined 4- and 5-year-olds in subsequent analyses.

The difference between the two conditions is evident at the individual level. As Table 1 shows, 21 of 32 children (66%) in the ambiguous view condition endorsed labels from the “close” informant on at least three of the four test trials, while just 9 of 32 children (28%) in the unambiguous view condition did so. These distributions are significantly different by Fisher’s Exact test, p = .003.
Table 1
Number of 4- and 5-year-olds who endorsed the close informant on 0, 1, 2, 3, or 4 test trials.

<table>
<thead>
<tr>
<th></th>
<th>Number of trials close informant was endorsed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Ambiguous view</td>
<td>0</td>
</tr>
<tr>
<td>Unambiguous view</td>
<td>0</td>
</tr>
</tbody>
</table>

Responses from just the first trial were similar to the pattern found across all four trials. Twenty-four of 32 children (75%) in the ambiguous view condition endorsed the “close” informant on the first trial. In contrast, only 18 of 32 children (56%) in the unambiguous view condition did so, distributions that are marginally different by Fisher’s Exact Test, $p = .09$.

3. Discussion

The explicit judgment question revealed that children in both conditions could identify which of two erroneous informants had been closer to being correct. As results from the ambiguous view condition show, when one informant’s labeling errors were reasonable given the circumstances, 4–5-year-olds preferred novel labels she later provided to those given by the informant whose earlier mistakes could not be explained. However, in the unambiguous view condition, when there was no excuse for either informant’s mistakes, children were as likely to endorse novel labels from the informant whose errors had been further from being correct as one whose errors had been closer to correct. Even though the “far” informant’s errors crossed the ontological boundary between objects and events, children treated her as equally (un)reliable as the “close” informant – just as children did in Einav and Robinson’s (2010) Study 1, where the errors were arguably less extreme. The selective trust demonstrated by children in the ambiguous view condition apparently stemmed from the fact that the “close” informant’s errors were reasonable given the context, but the “far” informant’s errors were baffling.

Children in both the unambiguous view and ambiguous view conditions received exactly the same restricted-view training. Additionally, children in both conditions saw restricted views of the familiar objects during the induction phase. The only difference between the two conditions was which parts of the objects were visible during the induction phase. In the ambiguous view condition, the available view made errors committed by the “close” speaker reasonable. In the unambiguous view condition, the same errors were inexplicable because the familiar objects were easily identified, demonstrated by the fact that children in this condition spontaneously offered the correct label on 2.66 of the four trials rather than agreeing with labels offered by either informant.

One might be concerned that children in the ambiguous view condition selectively trusted the “close” informant on the novel label test trials simply because they initially agreed with the familiar labels she provided in the induction trials. For example, when a red handle was the only visible part of the comb during the induction trials, the “close” informant’s claim that it was a brush seemed accurate – it could have been a brush. Perhaps children’s initial encoding of this speaker as “accurate” is what led them to endorse the claims she made later about the novel objects.

We think this explanation is unlikely. Earlier work has shown that when provided with new information, children as young as 4 can revise their trust in an informant. For example, Scofield and Behrend (2008) found that when 4-year-olds learned that an informant they had initially trusted had made mistakes, most chose to endorse the subsequent claims of another speaker whom they had no reason to doubt. In the present study, children in the ambiguous view condition tended to agree initially with the familiar label provided by the “close” informant. However, when the experimenter removed the window, revealed the entire image, and provided its correct label, it was clear the informant had erred. Additionally, even before the experimenter offered the correct label, children in the ambiguous view condition spontaneously labeled it themselves about half the time, sometimes commenting explicitly that, “They were both wrong.” Thus, there is good reason to think that children in the ambiguous view condition recognized that the “close” informant (with whom they initially agreed) was, in fact, wrong.
Would children in the ambiguous view condition have been as willing to forgive the “close” informant’s errors if they had been further from the truth? What if, for example, the “close” informant had claimed that the comb was a “chair” (an item from a different superordinate category) rather than a “brush”? Our study does not address this possibility, but we suspect that as long as errors were reasonable given the restricted view (e.g., the restricted view depicted the handle of the comb, which reasonably could have been mistaken for the leg of a chair) results would be the same. We leave this question for future work.

Another question is whether children in the ambiguous view condition would have been as forgiving of the “close” informant’s errors had they known the identity of the familiar objects during the induction phase. We think they would not have been as forgiving because their own knowledge about the identity of the familiar objects would have interfered with their ability to reason about the less knowledgeable informants (who only have access to the ambiguous view of the objects) – the so-called “curse of knowledge” (Birch & Bloom, 2003, 2007; Camerer et al., 1989). This is another empirical question we leave for future work.

The fact that only children in the ambiguous view condition selectivity trusted novel labels offered later by the “close” speaker is reminiscent of recent studies on “rational imitation” in infancy. In a study by Gergely, Bekkering, and Király (2002), for example, 14-month-olds observed an experimenter turn on a light housed inside a box by carefully and deliberately touching her forehead to the box. As in Meltzoff’s (1988) seminal study, most infants first attempted to turn on the light by also using their foreheads rather than their hands, which would have been equally effective and arguably more efficient. In a second condition, a different group of infants saw the experimenter claim to be cold, clutch a blanket to her body (thereby occupying both of her hands), and then use her forehead to turn on the light. In this condition, most infants first attempted to turn on the light using their hands rather than their foreheads. Gergely et al. argued that infants in the hands-free condition imitated the experimenter’s unusual means of turning on the light because they assumed she used her forehead for a reason – she could have used her hands, but she did not. In contrast, infants in the hands-occupied condition recognized that the experimenter used her forehead only because her hands were occupied, not because it was the best way to turn on the light.

Children in our study were much older than the infants in the imitation studies, but similarly to the infants, their responses depended on how “rational” the informants’ behavior seemed given the situation. They were more likely to trust an erroneous informant when there was an explanation for her error than when it was inexplicable (Nurmsoo & Robinson, 2009a; Robinson & Nurmsoo, 2009; but see Nurmsoo & Robinson, 2009b).

Children’s sensitivity to the magnitude of an individual’s errors has now been demonstrated in several domains. Einav and Robinson (2010, Study 2) found that 4-year-olds selectively trusted an informant who had earlier been closer to correct in the domain of numbers. Additionally, somewhat analogous research in the moral domain has suggested that by age 3 or 4, children treat people differently depending on how serious their moral “errors” are (Killen, McGlothlin, & Lee-Kim, 2002; Smetana, 1981; Smetana & Braeges, 1990; Smetana, Kelly, & Twentyman, 1984; Smetana, Schlagman, & Adams, 1993). Smetana and her colleagues found that young children judge some moral violations (e.g., one child hitting another child) as more serious than others (e.g., teasing; Smetana et al., 1984). Further, preschoolers’ judgments about the seriousness of an error are related to their judgments about how much punishment the individual who made that social mistake deserves (Smetana & Braeges, 1990). Acts involving physical harm (e.g., hitting) were not only rated as more serious than acts involving psychological harm (e.g., teasing), but also as deserving of more punishment.

People sometimes err when they communicate, and some errors are further than others from the truth. In the studies reviewed here, even 4-year-olds could recognize which of two erroneous labelers was closer to being correct, but it was not until age 7 that they reliably used this as a means of judging future credibility. As William James (1890, p. 369) observed, “...the art of being wise is the art of knowing what to overlook.” Children in the present study did not overlook the fact that both informants made mistakes about common, familiar objects. Yet only when we provided an explanation for the closer informant’s errors in the ambiguous view condition did children consider the magnitude of an error when assessing credibility.
Acknowledgments

We thank the children who participated and their parents. Thanks also to Caitlin Cole, Claire Galdun, Julie Furst, Caitlin Carnell, Ashley Meinhardt, and Brenna Broadus for assistance with data collection and coding. Thanks to Carrie Palmquist, Eric Smith, and anonymous reviewers for their helpful suggestions on earlier drafts.

References

Nurmsoo, E., & Robinson, E. J. (2009a). Children’s trust in previously inaccurate informants who were well or poorly informed: When past errors can be excused. Child Development, 80, 23–27. doi:10.1111/j.1467-8624.2008.01243.x

